High strength sewage treatment in a UASB reactor and an integrated UASB-digester system

Nidal Mahmoud *

Institute of Environmental and Water Studies (IEWS), Birzeit University, P.O. Box 14, Birzeit, The West Bank, Palestine

Received 27 June 2007; received in revised form 13 February 2008; accepted 14 February 2008

Available online 26 March 2008

Abstract

The treatment of high strength sewage was investigated in a one-stage upflow anaerobic sludge blanket (UASB) reactor and a UASB-digester system. The one-stage UASB reactor was operated in Palestine at a hydraulic retention time (HRT) of 10 h and at ambient air temperature for a period of more than a year in order to assess the system response to the Mediterranean climatic seasonal temperature fluctuation. Afterwards, the one-stage UASB reactor was modified to a UASB-digester system by incorporating a digester operated at 35 °C. The achieved removal efficiencies in the one-stage UASB reactor for total, suspended, colloidal, dissolved and VFA COD were 54, 71, 34, 23%, and 7%, respectively during the first warm six months of the year, and achieved only 32% removal efficiency for COD total over the following cold six months of the year. The modification of the one-stage UASB reactor to a UASB-digester system had remarkably improved the UASB reactor performance as the UASB-digester achieved removal efficiencies for total, suspended, colloidal, dissolved and VFA COD of 72, 74, 74, 62 and 70%. Therefore, the anaerobic treatment of high strength sewage during the hot period in Palestine in a UASB-digester system is very promising.

Keywords: Anaerobic treatment; Sewage; Suspended solids; UASB-digester; UASB

1. Introduction

The upflow anaerobic sludge blanket (UASB) reactor is widely used for sewage treatment in tropical countries, such as India and Brazil. In those countries, the ambient temperature ranges between 20 and 30 °C throughout the year (Von Sperling and Chernicharo, 2005; Aiyuk et al., 2006) and sewage is of low to medium strength. The current challenge in anaerobic technology development is to amend the system to treat municipal sewage in extreme situation. For instance, in Palestine and Jordan sewage is characterised with high COD concentrations of more than 1000 mg/L with high fraction of suspended COD (CODs) (up to 70%) and fluctuating temperature between winter and summer in the range 15–25 °C (Mahmoud et al., 2003a; Halalsheh et al., 2005). Previous research had demonstrated that the performance of one-stage UASB reactors at low temperatures (5–20 °C) is severely limited by the slow hydrolysis of entrapped solids that accumulate in the sludge bed when high loading rates are applied (Zee- man and Lettinga, 1999). The solids accumulation will impose a more frequent sludge discharge. Consequently, the excess sludge will increase leading to a low solids retention time (SRT) and a concomitantly less stabilised sludge bed with a low specific methanogenic activity (SMA). The latter will result in a poor soluble COD removal and an overall deterioration of the digestion process. The performance of the one-stage UASB reactor in Palestine when operated at short HRT similar to those in tropical countries will most likely be limited by the high imposed organic and solids loading rates. Leitão et al. (2006) pointed out that the use of UASB reactors for treatment of sewage with relatively high COD concentration is still undergoing trials and argued that such knowledge is important to improve the reliability of anaerobic processes.

* Tel./fax: +970 2 2982120.
E-mail address: nmahmoud@birzeit.edu
The anaerobic sewage treatment is certainly not limited to tropical countries neither to sewage of rather low strength (Mahmoud, 2002). The results of anaerobic sewage treatment in a 64 m3 one-stage UASB reactor operated in Jordan revealed that it is quite possible to operate the reactor under the conditions of Jordan and Palestine. In this case the reactor should be operated at a prolonged hydraulic retention time of more than 22 h (Mahmoud et al., 2004b; Halalsheh et al., 2005). The reactor in Jordan was monitored after one and a half year of operation and no data had been published on the start up phase and the reactor performance during the first year of operation. As an alternative approach to the one-stage UASB reactor, Mahmoud et al. (2004b) investigated a novel pilot-scale system consisting of an integrated high loaded UASB reactor and digester, namely UASB-digester system. In the proposed system a parallel digester unit is incorporated for enhanced sludge stabilisation and generation of active methanogenic sludge to be recirculated to the UASB reactor. The obtained results were promising as compared with the one-stage UASB reactor. Nonetheless, the system was only investigated in the Netherlands but had never been investigated in the Middle-East region, where climate and sewage characteristics are quite different.

In the present work, the anaerobic sewage treatment using a one-stage UASB reactor and a UASB-digester system in Palestine was investigated. A pilot-scale high loaded one-stage UASB reactor was started up without inoculation and operated for a period of more than a year at an HRT of 10 h. The one-stage UASB reactor was operated in order to elucidate the influence of seasonal temperature fluctuations on the system performance over the first year of operation. This is of particular importance to have base line records to be used as reference values to asses the achievements obtained from incorporating a digester. Afterwards, the one-stage UASB reactor was modified to a UASB-digester system by incorporating a digester operated at 35 °C in order to asses the system performance.

2. Methods

2.1. Experimental set-up

The experimental work was carried out over two successive periods at Al-Bireh wastewater treatment plant in Palestine. Firstly, a pilot one-stage flocculent sludge UASB reactor (volume, height, diameter: 140 l, 325 cm, 23.5 cm) was operated at ambient air temperature. Afterwards, the one-stage UASB reactor was modified to the UASB-digester system by incorporating a CSTR digester (working volume 106 l). A schematic diagram of the experimental set-up is illustrated in Fig. 1. The UASB reactor and the digester were constructed from Plexiglas and PVC tubes, respectively. The temperature of the digester content was controlled by recirculating thermostated water of 35 °C through a tube placed around the reactor. Taps were installed over the whole UASB reactor height at about 25 cm apart for sludge discharge, re-circulation and analysis. The digester content was continuously mixed at around 60 rpm.

2.2. Operation and start up of pilot reactors

2.2.1. One-stage UASB reactor

The one-stage UASB reactor was started up during spring specifically in April, coinciding the beginning of the hot period in Palestine. It was operated for a period of more than a year at ambient temperature and 10 h HRT. The reactor was fed with domestic sewage pre-treated with screens and grit removal chamber. The sewage was pumped every 5 minutes to a holding tank (200 l plastic container), with a resident time of about 5 minutes, where the reactor was fed and the influent was sampled (Fig. 1). Daily monitoring was started since the onset of the experiment including ambient air temperature and biogas production, as well as grab influent and effluent wastewater samples analysis for total COD. The influent and effluent were analysed for COD$_{\text{tot}}$ and the distinguished COD fractions over the hot and cold periods of the year. After 144 days of operating the one-stage UASB reactor, five influent and effluent samples were collected and analysed during a period of 35 days for BOD, TSS, NH$_4^+$ and PO$_4^{3-}$. The atmospheric pressure was measured in situ. The one-stage UASB reactor was operated for 389 days of which the first 42 days were considered as a “start-up” period.

2.3. UASB-digester system

The digester was inoculated with activated sludge collected from the thickener of the extended aeration wastewater treatment plant of Al-Bireh City, Palestine. During the operation of the one-stage UASB reactor, the digester was continuously fed with activated sludge after being diluted to around 20 gTS/L with VS/TS ratio of 0.74 so as to achieve a SRT of 20 days. The digester was operated in this mode for a period of four months to accelerate the digester start up. Afterwards the digester was incorporated to the one-stage UASB reactor. The sludge bed of the UASB reactor of the UASB-digester system was kept below 40 cm from the bottom of the reactor, by discharging the sludge accumulated above 2–3 times a week. The discharged sludge was collected in a bucket, from where the sludge was immediately fed to the digester by a peristaltic pump. At the same time, the digester effluent was pumped out to another bucket, while a third pump was recirculating it to the lower part of the UASB reactor at 10 cm from the bottom. Sludge was never wasted during the system operation. The UASB-digester system was operated for 107 days of which the first 57 days were considered as a “start-up” period. The influent and effluent of the UASB-digester system was monitored for biogas production, temperature and COD measurements. A set of six samples was analysed during the steady state period for COD$_{\text{lar}}$ and COD fractions, TSS, NH$_4^+$ and PO$_4^{3-}$.
2.4. Analytical methods

Total suspended solids (TSS), volatile suspended solids (VSS), total solids (TS), volatile solids (VS), ammonium (NH₄⁺), chemical oxygen demand (COD), biological oxygen demand (BOD), PO₄³⁻/C₅₀, and SO₄²⁻/C₅₀ were measured according to standard methods (APHA, 1995). Raw samples were used for measuring total COD (CODₜₒₜ), 4.4 μm folded paper filtered (Schleicher and Schuell 5951/2, Germany) samples for paper filtered COD (CODₚ) and 0.45 μm membrane – filtered (Schleicher and Schuell ME 25, Germany) samples for dissolved COD (CODₜₒₜ). The suspended COD (CODₛₛ) and colloidal COD (CODₖₒ) were calculated as the difference between CODₜₒₜ and CODₚ and the difference between CODₚ and CODₜₒₜ, respectively. The volatile fatty acids (VFA) analysis was carried out as described by Buchauer (1998). All samples were analysed in duplicate. Methane evolved from the reactors was determined by the gas displacement method using 5% NaOH solution.

2.5. Calculations

2.5.1. COD balance

\[
\text{COD}_{\text{tot,inf}} = \text{COD}_{\text{accumulated}} + \text{COD}_{\text{CH₄ UASB}} + \text{COD}_{\text{CH₄ digester}} + \text{COD}_{\text{tot,eff}}
\]

where

- CODₜₒₜ,inf and CODₜₒₜ,eff : amount of total COD in influent and effluent (mgCOD/l)
- CODₜₒₜ,inf : amount of produced CH₄ (liquid form + gas form)
- CODₜₒₜ,accumulated : amount of accumulated or not detected COD (mg/l)

3. Results and discussion

3.1. Sewage characteristics

The characteristic of raw sewage used in this research is depicted in Table 1. The sewage is characterized with high concentration of pollutants according to the sewage strength classification proposed by Metcalf and Eddy (2003) and Henze (1997). The high sewage strength is also clear when compared with sewage characteristics in several countries in Europe, Asia and Latin America (Mahmoud et al., 2003a). The high sewage strength in Palestine is postulated to low water consumption and people's habits (Mahmoud et al., 2003a). The influent COD was mainly in the suspended form followed by dissolved then colloidal of, respectively 62%, 25% and 13%. Around 36% of the influent dissolved COD was in the VFA form.
3.2. Organic loading rate

The one-stage UASB reactor was operated at high organic loading rates (OLR) of 3.35(0.32) and 2.73(0.45) g COD/l d during the hot six months of the year and the other cold six months, respectively. Similarly, the UASB reactor in the UASB-digester system was operated at a rather high OLR of 2.84(0.66) g COD/l d.

3.3. COD removal efficiency

During the start up period, the one-stage UASB reactor performed as an enhanced settler as COD removal started directly since the onset of the reactor operation. The achieved removal efficiencies during this period of operation (average of 5 measurements over the first 42 days of operation) for COD$_{tot}$, COD$_{ss}$, COD$_{col}$ and COD$_{dis}$ were 48, 64, 12 and 28%, respectively. The effluent quality during this period (stage 3) was quite stable as clear from Fig. 2 and the low standard deviations of the COD concentration and COD removal efficiency of, respectively 24 and 5.6.

3.4. Nutrients removal

The achieved NH$_4^+$ and PO$_4$ removal efficiencies in both reactors were very low (Table 2). The results clearly demonstrate that UASB reactors are not sufficient for removing nutrient from wastewater. In the UASB reactors only a change in the chemical forms of nitrogen and phosphorous take place as reported by Bogte et al. (1993). Therefore, a nutrient removal, when necessary, can be achieved in a separate post-treatment step (Haandel and Lettinga, 1994).

3.5. Sludge bed development

The course of sludge bed development during the whole period of operation is depicted in Fig. 3. The results reveal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>USAB reactor</th>
<th>Cold period</th>
<th>USAB-digester</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD$_{tot}$</td>
<td>24</td>
<td>1394(132)</td>
<td>1159–1701</td>
</tr>
<tr>
<td>COD$_{ss}$</td>
<td>22</td>
<td>826(167)</td>
<td>548–1176</td>
</tr>
<tr>
<td>COD$_{col}$</td>
<td>22</td>
<td>196(61)</td>
<td>110–380</td>
</tr>
<tr>
<td>COD$_{dis}$</td>
<td>22</td>
<td>376(69)</td>
<td>226–471</td>
</tr>
<tr>
<td>VFA</td>
<td>19</td>
<td>123(42)</td>
<td>34–193</td>
</tr>
<tr>
<td>COD$_{tot}$</td>
<td>20</td>
<td>620(95)</td>
<td>443–782</td>
</tr>
<tr>
<td>COD$_{ss}$</td>
<td>20</td>
<td>215(69)</td>
<td>110–380</td>
</tr>
<tr>
<td>COD$_{col}$</td>
<td>20</td>
<td>120(56)</td>
<td>17–220</td>
</tr>
<tr>
<td>COD$_{dis}$</td>
<td>20</td>
<td>285(87)</td>
<td>133–518</td>
</tr>
<tr>
<td>VFA</td>
<td>18</td>
<td>113(49)</td>
<td>22–196</td>
</tr>
<tr>
<td>Removal (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COD$_{tot}$</td>
<td>20</td>
<td>55(7)</td>
<td>43–69</td>
</tr>
<tr>
<td>COD$_{ss}$</td>
<td>18</td>
<td>73(10)</td>
<td>57–89</td>
</tr>
<tr>
<td>COD$_{col}$</td>
<td>18</td>
<td>40(26)</td>
<td>–8–89</td>
</tr>
<tr>
<td>COD$_{dis}$</td>
<td>18</td>
<td>21(21)</td>
<td>–22–59</td>
</tr>
<tr>
<td>VFA</td>
<td>17</td>
<td>–4.5(57)</td>
<td>–170–71</td>
</tr>
</tbody>
</table>

Standard deviations are shown in parenthesis.
clearly the successful sludge bed development in the one-stage UASB reactor without inoculation during two months of operation. Solids were accumulated gradually with temperature decline. The reason of that is limited hydrolysis of the entrapped solids which is in agreement with the results presented by de Man (1990). The sludge accumulation was accompanied with effluent quality deterioration (Fig. 2). The high TSS concentration in the effluent of the one-stage UASB reactor (Table 2) reveal that sludge was mainly removed by being washed out in the effluent. This is attributed to the poor conversion of the accumulated solids which would result in spill out of digestion intermediate products with the effluent. In addition, Mahmoud et al. (2003b) reported that when biogas production is low, the provided mixing is insufficient. Consequently channeling of wastewater through the sludge bed might occur, thus decreasing removal efficiency. Moreover, the hydraulic mixing in the reactor was rather low. The upflow velocity in the reactor was 0.3 m/h which is less than the recommended values of 0.5–1.0 m/h. Afterwards, when temperature started to increase sludge started to be degraded, and sludge profile became rather stable particularly when the one-stage UASB reactor was modified to a UASB-digester system.

Table 2
Influent and effluent characteristics in terms of COD_{tot}, BOD, TSS, PO_4 and NH_4 during anaerobic sewage treatment in a one-stage UASB reactor and a UASB-digester system

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>One-stage UASB reactor</th>
<th>UASB-digester system</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>From day 144–day 179^a</td>
<td>From day 57–day 107^b</td>
</tr>
<tr>
<td>N = 5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Influent COD_{tot} mg/l</td>
<td>1250(56)</td>
<td>645(63)</td>
<td>48(4.56)</td>
</tr>
<tr>
<td>Influent BOD_5 mg/l</td>
<td>588(72)</td>
<td>308(68)</td>
<td>47(13)</td>
</tr>
<tr>
<td>Influent TSS mg/l</td>
<td>1571(159)</td>
<td>1135(135)</td>
<td>27.8(3)</td>
</tr>
<tr>
<td>Influent NH_4-N mg/l</td>
<td>63(16)</td>
<td>48.8(15)</td>
<td>22.1(10)</td>
</tr>
<tr>
<td>Influent PO_4-P mg/l</td>
<td>12.63(5)</td>
<td>12.3(4)</td>
<td>2.5(10)</td>
</tr>
<tr>
<td>Temperature °C</td>
<td>23(1.8)</td>
<td>29(2)</td>
<td></td>
</tr>
</tbody>
</table>

Standard deviations are shown in parenthesis.

^a The zero day is the first day of operating the UASB reactor in April 2005.

^b The zero day is the first day sludge from the digester fed to the UASB reactor in June 2006.
The pattern and profile of the VS/TS ratio presented in Fig. 4 is not showing any dependency on the sludge bed height. Therefore, sludge from the bottom of the reactor with the highest concentration is preferable to be recirculated to the digester, in order to reduce the latter volume. Mahmoud et al. (2004b) reported similar findings. The VS/TS ratio of the sludge in the sludge bed of the one-stage UASB reactor was the highest during winter period indicating the poor conversion of accumulated solids. Afterwards, the VS/TS ratio had decreased to a mean value of 59% when the one-stage UASB reactor was modified and operated as a UASB-digester system (Table 3). The incorporation of the sludge digestion bed resulted in remarkable stabilization of the accumulated solids. This is clear from the disappearance of solids at tap 3 and the low VS/TS ratio at tap 1 and 2. Worth mentioning that sludge was never wasted, yet partly and occasionally accumulated, from the both operated systems. The extremely low sludge production is a remarkable feature of the anaerobic processes.

Accoring to Cavalcanti et al. (1999), to avoid the discharge of sludge in the effluent, it is necessary that excess sludge be discharged periodically from the reactor before its storage capacity is exhausted. However, in the present case, the storage capacity of the reactor was not exhausted, neither the effluent SS could be reduced. Rather, the UASB reactors are usually operated with sludge bed volume of about 50% of the total reactor volume with minimum height of sludge bed not less than 1.0 m to avoid short circuiting of the influent. The sludge bed height of the investigated UASB reactor was maximum 0.85 m for few days and for remaining days it was less or equal to 0.50 m. Since very small sludge bed height has been adopted, it has resulted in less COD removal efficiency. High SS concentration in the effluent might also be addressed to improper functioning of gas–liquid–solids (GLS) separation device. For instance, the tentative design criteria for the design of the gas–solids separator requires that the height of the gas collector to be between 1.5 and 2 m at reactors height 5–7 m. The surface area of the apertures between the gas collector and the reactor walls was 20% of the reactor surface. This resulted in an upflow velocity in the apertures inlet of 1.6 m/h which satisfies the GLS design guidelines (Vieira and Souza, 1986; Lettinga and Hulshoff Pol, 1991).

3.6. COD mass balance over the UASB-digester system

The mass balance over the UASB-digester system revealed that the main conversion took place in the UASB reactor. In the digester only 1% of the influent COD$_{tot}$ was converted to methane gas. This is in agreement with the results previously presented by Mahmoud et al. (2004b). During the whole period of operation of around four months, no sludge was discharged as sludge accumulation was minimal. This strongly indicates the high conversion of the removed COD in the UASB reactor. The effluent dissolved COD and VFA were very low indicating good methanogenic conditions (Table 1). In addition to enhancing the sludge quality in the UASB reactor, it is likely that the incorporated digester had improved the mixing in the UASB reactor because of sludge recirculation and hence
improved performance of the reactor. The low sludge production had resulted in long SRT operation of the digester reaching values as high as 100 days. However, the sludge volume in the UASB reactor is expected to increase with time, thus improving the system physical and biological performance. Halalsheh et al. (2005) reported sludge bed development for more than 1 m high after around three years of starting a UASB reactor treating concentrated sewage in Jordan. Under such conditions, more digestion will take place in the digester.

3.7. Final discussion

The COD removal efficiency of 72% attained in the UASB reactor of the UASB-digester system is higher than those achieved in well functioning UASB reactors operated in sub-tropical regions at much lower loading rates. Halalsheh et al. (2005) reported COD$_{tot}$ removal efficiency of 58% while treating concentrated sewage in a one-stage UASB reactor in Jordan. The latter UASB reactor was operated during summer time at 23–27 h HRT (OLR 1.4–1.6 kgCOD/m3 d). The achieved COD removal efficiencies in the UASB-digester system are even as high as those reported in tropical countries with almost similar HRT of 10 h. In tropical countries the achieved COD removal efficiencies are in the range of 51–74% (Von Sperling and Chernicharo, 2005; Aiyuk et al., 2006).

The UASB-digester system was operated during summer time, so the enhancement in the UASB reactor performance can not be merely attributed to the modified setup of the UASB-digester system. However, the achieved COD removal efficiency in the UASB-digester system was higher than those achieved in the one-stage UASB reactor over the whole first year. The system even performed better than previously researched UASB reactors that had been operated at much higher HRTs of 2 and 4 days at the same wastewater treatment plant of Al-Bierh City where this research was conducted (Al-Shayah and Mahmoud, 2008).

The UASB-digester system was evaluated under higher temperature conditions. Hence it will not be appropriate to conclude that this performs better than UASB reactor alone. The performance of UASB-digester system should be compared at lower temperature and then the conclusion can be drawn. However, better performance of the UASB-digester system is evident

Table 3

<table>
<thead>
<tr>
<th>Location</th>
<th>UASB reactor</th>
<th>UASB-digester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot period</td>
<td>Cold period</td>
<td></td>
</tr>
<tr>
<td>April 05–Oct. 05</td>
<td>Oct. 05–April 06</td>
<td>July–Aug. 06</td>
</tr>
<tr>
<td>From day 12–196</td>
<td>From day 196–377</td>
<td>From day 446–496</td>
</tr>
<tr>
<td># Average</td>
<td># Average</td>
<td># Average</td>
</tr>
<tr>
<td>Tap 1</td>
<td>12</td>
<td>67(13)</td>
</tr>
<tr>
<td>Tap 2</td>
<td>8</td>
<td>62(15)</td>
</tr>
<tr>
<td>Tap 3</td>
<td>No sludge</td>
<td>76(0.5)</td>
</tr>
</tbody>
</table>

Standard deviations are shown in parenthesis.
from the results presented for hot temperatures. Though, it becomes more and more evident that the problem of solids accumulation during the cold period of the year can be handled successfully by incorporating a sludge digester.

The digester volume can also be substantially reduced, as Mahmoud et al. (2004a) showed hardly any improvement in the digester performance at increasing the SRT above 10 days at 35 °C. Moreover, due to solids content stratification in the sludge bed of the UASB reactor while maintaining a uniform stability, sludge with high concentration can be conveyed from the UASB reactor to the digester which is in agreement with the results previously presented by Mahmoud et al. (2004a).

4. Conclusions

– The performance of the investigated one-stage UASB reactor was limited by the low temperature during winter time and the high strength and solids content. The one-stage UASB reactor achieved removal efficiencies for total, suspended, colloidal and VFA COD of 54, 71, 34, 23%, and −7%, respectively during the first warm six months of the year, and achieved only 32% removal efficiency for COD$_{\text{tot}}$ over the following cold six months of the year.

– The UASB-digester system represents an efficient technology for anaerobic (pre)treatment of high strength sewage during summer time, i.e. it provides average removal efficiencies for COD$_{\text{tot}}$, COD$_{\text{ss}}$, COD$_{\text{col}}$ and COD$_{\text{dis}}$ of 72%, 74%, 74% and 62%, respectively.

– The performance of the UASB-digester system should be assessed and demonstrated in Palestine during winter time.

Acknowledgements

This research was supported by Grants from the UNESCO/Flanders FIT project Capacity building and training on environmental training and management. The author thanks Moustafa Yousef El Baba from Al Azhar University, Gaza/Palestine and Radwan Al-Weshah from UNESCO Cairo Office for managerial support.

References

